Acolgn.tt-NAnne Days ferrad CH. 7 "Mouseexum" (aka "Inerova in Morton") * HBrory: - People (setentists) have forgotten who aerually come up with The Hea of momentum, True, - However, It does have seeds" A Danso: When you the within it Demonstrator. - Now you It I not come up with The idea A Impolse = Duomentume, lowever it does agan have elements of his laws wither it. (SFE = BMV) 7,1 moment une * Momentum = mass x velocity D= MXV m= = kg A For an object V= ? m/5 to have momentum it p= kg. m/3 lookat with speedor These are the F13. 7.11 un 173 for relocaty. moneague, Docent get Q: Does an object at charged 70 rest have momentum! anythery else).

7.2 Impulse changes Moneutun

A For an object to have mounted w/ speed or velocity.

Q: What gives an object momentum? A! NOT just a Force, but an Impulse (AFT).

In other words,

Demos:)
Without $\Delta FZ = \Delta m V$

motion) DImpulse = D momentum CAT.)

Prore It w/ und + analysos:

DFT = Dmv DN.S = Dkg. m/s

 $\left(\frac{k_g \cdot m_s^2}{s} \right) \left(\frac{8}{1} \right) = \left(\frac{k_g \cdot m_s^2}{s} \right)$ $\left(\frac{k_g \cdot m_s^2}{s} \right) = \left(\frac{k_g \cdot m_s^2}{s} \right)$

(2)

A (look at Figure 7.1, The Truck vs. The Skare)

Name Dare Period

CH.7: Momentum

- ~ Why does it hurt less when you fall on a wooden floor Than a concrete floor?
- a stack of cement bricks with a blow of a bare hand?
- ~ why is follow-Through so important in golf, baseball, and boxing?
- ~ Why is the carroon Road Runner" so funny?

The laws of momentum will explain why.

(Because many laws of physics especially conservation of momentum laws, are broken.)

* <u>Recall</u> Newton's 15 Law of Morrow - Inertia. ~ Now, we are going to look at inertia in motion - momentum.

7.1 Momentum

* Momentum: is inertia in motion. More specifically, the mass of an object multiplied by its velocity.

momentum = mass x velocity

or momentum = my

mAss = kg (sometimes you see - velocity = mg in a given direction, p = mv)

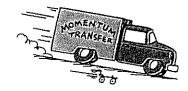
(you can use speed also)

(1)

Some examples:

- a moving object can have a large momentum if it has a large mass, a high speed, or both.
- A moving truck has has more moneitrum Than a car moving at the same speed because The truck has more mass.
- ~ A fast car has more momentum than a slow truck.
- ~ A truck at rest has no momentum at all.

(See fig. 7.1 and @ pg. 87)


CH. 7 Moment um: All 3 laws are within it Jews of Newton did not come-up with momentume... A Impulse = A momentum came after Newton, The history has been lost. 15 Caw - Inertain ("Anobject as rest. , Anobject in morron...) momentum P=MXV D= moneething M= mass (kg) P = (kg) (W/s) V = speed or relocity b= kg. mg I We say That moment un is Inertia in Motion. ~ Q: How to we measure inerta? We measure mass (kg), n So when we say inerria (m=kg) in motion (N = m/s); it only measures mertia when an object is in worth. ~ In other words, we can only measure momentum when an object moves. ~ Q: If an object is at rest does

17 have mouseoper ? NO.

(1)

Compare & contrast DFT = D min w/ Newton's 2nd Law (F=mxa) Q: What ove The units for N. 2ndlaw? Funka $F = (kg) (m/s^2)$ $F = (kg) (m/s^2) = Newton(N)$ Q: What are The units for I p = Momentum? P = 2 (Kg) (Mg) Q: Are These The same? F = (kg) (m/s2) = N p=(kg)(m/s) = ? kg.m/s A: NO!

Momentum: P=MXV V = ? my p = momentum = kg. mg Don't confuse The um 13 for momentum w/ Newton's 2nd Law: F=m× q (N) =/kg) (m/2) N = Kg. (m/2) K III (NOT The Same!() So The units for pare nlways p = kg·m/s = ? kg·m/s * We don't reduce It or substitute with anything else.

Figure 7.1 &

A truck rolling down a hill has more momentum than a roller skate with the same speed, because the truck has more mass. But if the truck is at rest and the roller skate moves, then the skate has more momentum because only it has speed.

Question

Can you think of a case where the roller skate and the truck shown in Figure 7.1 would have the same momentum?

■ Answer

The roller skate and truck can have the same momentum if the speed of the roller skate is much greater than the speed of the truck. How much greater? As many times greater as the truck's mass is greater than the roller skate's mass. Get it? For example, a 1000-kg truck backing out of a driveway at 0.01 m/s has the same momentum as a 1-kg skate going 10 m/s. Both have momentum = 10 kg m/s.

P=MXV MAC Truck vs. Roller Skare (see fig. 7.1) more Trusk = 1000. Okg Roller Skage = 1.0 kg Q: Can you Think of a case where The Roller skate and The Truck shown in fry. 7.1 would have The same momentum? Truck (m=1000,0kg) vs. Skate (m=1.0kg) P=MXV P=MXV p= (1000.0kg)(1.0m/g) p = (1.0kg)(1000.0mg p = 1000.0kg · m/s p= 1000.0 kg. mg 8 Ame! !! Q! What does this men! A: Imagine you were Supermanor Super Woman, it would take The same amount of Impulse (Forcextime; Ft) up to Their speeds).

2nd Example ...

Q: Can you get a feather To have The same momentum as The Space Shuttle in Space? A: YES!!! Comment of the second of the s Mesos 100,000.0kg 1.0 Kg Space Shutthe Feather $p = m \times v$ p = (100,000,000,000)(1.0mg) p = (1.0mg)(100,000.0mg)P=mxV p=100,000.0 kg. m/s p=100,000.0 kg. m/s

Same !! I Q: What does This mean? A: Agasn if you were Superman or Superwoman it would take The Street Impulse (Ft) 70 STOP both, or to get both up to speed.

Q: How is the Fermula for D Impulse = A Mom. derived? (AFT = MmV) Int Cars: F=mxa momentum a Q: Does momentum lette This I Lea of Newton's ?nd Can withou it? n yes (Kind of) Q: How do you Q: what gives an object acceleration? acceleration? a = F m $a = \Delta V = V_4 - V_1$ $\Delta t = t_4 - t$ At tot, $\alpha = \alpha$ (m) F = AV (m) DFt = DMV Q: Does This formula here look a lot like F=Mxa! A: Kind of ... (2)

Recall: Kinda looks like ... F=mxa Momentum has The "seeds" of Newton's 3 Laws withon it Let's prove Through Unit Analysis: $\Delta Ft = \Delta mV$ N. S = kg. m/s (kg, 1/2) × 5 = kg × 1/5 (Kg. Mg) x = Kg x m/5 V / ty. m = kg. m

DFt = DMV Q: How was This formula derived mathmatically? STATT WITH Newton's 2nd Law: (couple) F = m x a (what!) $a = \Delta V = \frac{V_4 - V_1}{t_4 - t_1}$ Substitution ... $F = (m) \left(\frac{\Delta v}{\Delta t} \right) / \Delta t$ AFT = AMV * Now let's prove The unit analysis.

Let's prove Through unit analysis:

AFT = AMV

N.S = kg·m/s

(kg. 1/2) (S) = (kg) (m/5)

 $(kg \cdot \frac{M}{82})(\frac{8}{7}) = (kg)(\frac{M}{5})$

* Recall:

AFt = Amv

WAS "seeds

of Newton's

3 (aws of

Motion.

Kinda

Looks like

F=mxa

/ kg, m/s = kg, m/s

CH.7 Momentum

7.2 Impulse Changes Momentum

- ~ If momentum changes Then either mass or velocity changes.
- n How long the force is acting on an object to give it velocity (which will also accelerate the object) is also very important.
- a Apply a brief force to a stalled automobile and you produce a change in its momentum.
- a Apply The same force over an extended period of time and you produce a greater change in the automobile's momentum.
- are important in changing momentum.

* Impulse: is the quantity force x Time. In shorthand notation -

impulse = Ft

~ The greater the impulse exerted on something, the greater will be the change in momentum. The exact relationship is.

impulse = change in momentum

 $F_t = \Delta(m\nu)$

(Impulse is impact force x Time and is measured in newton-seconds)

Case 2: Decreasing Momentum & Case 2: Decreasing Momentum on pp. 88-90 (See also "Bunger Tumping" then worth video ()

7,2 cont. - see figures more books! Case 1: Thereasing Momentum

AFt = AMV

Solfball

E Golf Club

T = M V (10.0N)(1.0s) = 10.0N·s = 10kg·m/s (10.0Ns) = 10.0kg·m/s Q: What do you have to do to give it womentum? A: Give It an Impulse (Ft)! Q: What has to be done to the golf ball to bring it to a stop? A: An Impulse! (fronthe ground!) (0.75 kg) (40.0 m/s) = (2.0 N) (5.0 s)V 10.0 kg. m/s = 10.0 N.S * The Idea of Follow - Through in Bull Sports. What

= Longer Impulse time fastest

= greater Impulse

= greater Mesmentum A: = greater money = The Golf ballgoes farther! Q: What (10.0N)(0.25s) = (0.25kg)(10.0mg)2.5N.5 2.5kg.m/s does This mean? (10.0N)(0.75s) = (0.25kg) (30.0 m/s) 7.5 N.S 7.5 Kg. W/S 3X ...

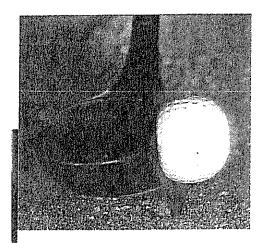


Figure 7.2 The force of impact on a golf ball varies throughout the duration of impact.

Case 1: Increasing Momentum

To increase the momentum of an object, it makes sense to apply the greatest force possible for as long as possible. A golfer teeing off and a baseball player trying for a home run do both of these things when they swing as hard as possible and follow through with their swing.

The forces involved in impulses usually vary from instant to instant. For example, a golf club that strikes a golf ball exerts zero force on the ball until it comes in contact with it; then the force increases rapidly as the ball becomes distorted (Figure 7.2). The force then diminishes as the ball comes up to speed and returns to its original shape. So when we speak of such impact forces in this chapter, we mean the *average* force of impact. (Be careful to distinguish between *impact* and *impulse*. Impact refers to a *force* and is measured in newtons; impulse is *impact force* × *time* and is measured in newton-seconds.)

Case 2: Decreasing Momentum

If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack, you wouldn't have to call on your knowledge of physics to make up your mind. Common sense tells you to choose the haystack. But knowing the physics helps you to understand *why* hitting a soft object is entirely different from hitting a hard one. In the case of hitting either the wall or the haystack and coming to a stop, your momentum is decreased by the same impulse. The same impulse does not mean the same

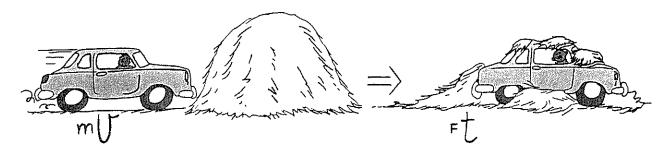


Figure 7.3 A

If the change in momentum occurs over a long time, the force of impact is small.

amount of force or the same amount of time; rather it means the same *product* of force and time. By hitting the haystack **ins**tead of the wall, you extend the impact time—the time during which your momentum is brought to zero. A longer impact time reduces the force of the impact and decreases the resulting deceleration. For example, if the time of impact is extended 100 times, the force of impact is reduced 100 times. Whenever we wish the force of impact to be small, we extend the time of impact.

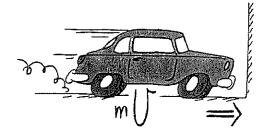
We know that a padded dashboard in a car is safer than a rigid metal one and that airbags save lives. We also know that to catch a fast-moving ball safely with your bare hand, you extend your hand forward so there's plenty of room for it to move backward after making contact with the ball. When you extend the time of impact, you reduce the force of impact.

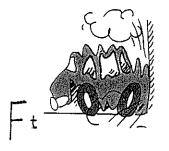
8

wha Instruction with more land time with serie sivel on a

safer may "Wh com expl: walk ables the c shor

than

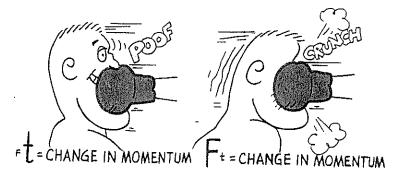

Figu In bo mom punci (Righ impai pply the configuration of the


e to non

erent he '

3

∙ce ∋,


◀ Figure 7.4

If the change in momentum occurs over a short time, the force of impact is large.

When jumping from an elevated position down to the ground, what would happen if you kept your legs straight and stiff? Ouch! Instead, you know to bend your knees when your feet make contact with the ground. By doing so you extend the time during which your momentum decreases by 10 to 20 times that of a stiff-legged, abrupt landing. The resulting force on your bones is reduced by 10 to 20 times. A wrestler thrown to the floor tries to extend his time of impact with the mat by relaxing his muscles and spreading the impact into a series of smaller ones as his foot, knee, hip, ribs, and shoulder successively hit the mat. Of course, falling on a mat is preferable to falling on a solid floor because the mat also increases the impact time.

We know a glass dish is more likely to survive if it is dropped on a carpet rather than a sidewalk because the carpet has more "give" than the sidewalk. Ask why a surface with more give makes for a safer fall and you will get a puzzled response from most people. They may simply say, "Because it gives more." However, your question is, "Why is a surface with more give safer for the dish?" In this case, a common explanation isn't really an explanation at all. A deeper explanation is needed.

To bring the dish or its fragments to rest, the carpet or the side-walk must provide an impulse, which you know involves two variables—impact force and impact time. Since impact time is longer on the carpet than on the sidewalk, a smaller impact force results. The shorter impact time on the sidewalk results in a greater impact force.

Figure 7.5 ▲

In both cases the impulse provided by the boxer's jaw must counteract the momentum of the punch. (Left) When the boxer moves away from the punch, he increases the time of impact and reduces the force of impact. (Right) When the boxer unwisely moves toward the punch, the time of impact is reduced and the force of impact is increased. Ouch!

O The Best From Conceptual Physics Alive!

Decreasing Momentum Over a Short Time

Side 1 Chapter 34 Physics

CH. 7: Momentum

7.2 Impulse Changes Momentum (GAT.)

~ Recall: momentum

~ Recall: Impulse — The impact forcex impact time can create an impulse that can increase or decrease momentum.

Now, Impulse = momentum Ft = mV

Let's look at some examples:

Bunger Jumper Example:

A. Buryee on Steel Cable: Ft = mv -> (8000N)(.015) = (80kg)(10 m/s)
800N.5 = 800kg.m/s

8. Bungee on a Bungee Cord: Ft = mv -> (zon)(45) = (80kg)(10 m/s) ~ which would you prefer? * 800N.5 = 800kg·m/s

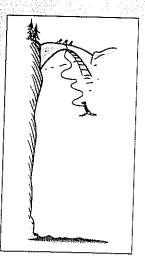
~ Keep in mind that the impulse for both is the same, but the force and time for both is different the longer the impact time, the less the impact force.

An Egg, A sheet, and A Athlere:

A. Egg Thrown at a wall: Ft = mv -> (27N) (.01s) = (.01kg) (27mg)
60mph & 27mg
.27N·S = .27kg·m/s

B. Egg thrown at a sheet: Ft = mv -> (0.27M) (15) = (01kg) (27mg)
60mph & 27mg
.27N·S = .27kg·m/s

Bunger Jumping Example:
- you have a choice... A. Bungee on Speel Cable: DMV = DFE m = 80kg V = 10 m/s (80kg)(10m/s) = (80,000N)(.015) 800 kg, W/s = \$800 N. S * wis force will disnember B, Bunger on Bunger Cord: DWV = DFt (80 kg) (10 m/s) = (200x) (4.05) 800 kg·m/s = 3 800 N·s * This force is like fally into a bed of feathers!


PHYSICS OF SPORTS

Bungee Jumping

The impulse-momentum relationship is put to a thrilling test during bungee jumping. Be glad the rubber cord stretches when the jumper's fall is brought to a halt, because the cord has to apply an impulse equal to the jumper's momentum in order to stop the jumper—hopefully above ground level.

Note how $Ft = \Delta(mv)$ applies here. The momentum, mv, we wish to change is the amount gained before the cord begins stretching. Ft is the impulse the cord supplies to reduce the momentum to zero.

Because the rubber cord stretches for a long time, a large time interval t ensures that a small average force F acts on the jumper. Elastic cords typically stretch to about twice their original length during the fall.

The safety net used by circus acrobats is a good example of how to achieve the impulse needed for a safe landing. The saftey net reduces the impact force on a fallen acrobat by substantially increasing the time interval of the impact.

Sometimes a difference in impact time is important even if you can't notice the give in a surface. For example, a wooden floor and a concrete floor may both seem rigid, but the wooden floor can have enough give to make quite a difference in the forces that these two surfaces exert.

Questions

- 1. When a dish falls, will the impulse be less if it lands on a carpet than if it lands on a hard floor?
- 2. If the boxer in Figure 7.5 is able to make the impact time five times longer by "riding" with the punch, how much will the force of impact be reduced?

Answers

- No. The impulse would be the same for either surface because the same momentum change occurs for each. It is the *force* that is less for the impulse on the carpet because of the greater time of momentum change. If you answered this question incorrectly, you probably did not distinguish between impulse and impact. They sound the same, but they're not!
- 2. Since the time of impact increases five times, the force of impact will be reduced five times.

Q: How fast do you have to Throw The egg of a bedsheet to break it? know! m=50,05k Solve for V! F = 2.0N (To break egg, t=1.55 N = solve

Physics

CH.7: Momentum

7.3 Bouncing

If a flower pot falls from a shelf onto your head (ouch!), you may be in trouble. However, if it bounces off your head it is going to hurt so much more. Why?

n Demo:

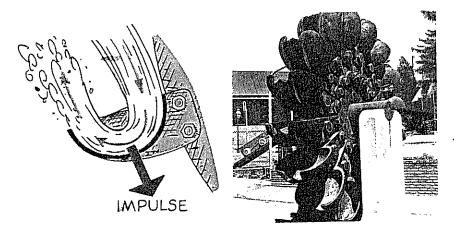
A bouncing ball us. a ball that doesn't bounce. I which ball had the greater impulse (Ft)?

Impulses are greater when an object bounces. The impulse required to bring an object to a stop and then to "throw it back again" is greater than the impulse required merely to bring the object to a stop.

Practical Example: Carch a flower pot and bring it to a stop.

Carch a flower pot, bring it to a stop and Then throw it into the air again.

- This increased amount of impulse is supplied by your head if the pot bounces from it!


(look at fig. 7.6 & 7.7)

- Lester A. Pelton parented his invention and made a lot more money that morny of the gold miners during california's Gold Rush.

Physics = \$\$

◄ Figure 7.6 Is the karate chop delivered in a short time or a long time? If the hand bounces upon impact, is the change in momentum greater? Is the impulse greater?

Figure 7.7 The Pelton Wheel. The curved blades cause water to bounce and make a U-turn, producing a large impulse that turns the wheel.

Physics

CH.7: Momentum

7.4 Conservation of momentum (The Law of Conservation of Momentum) *The Law a Recall: From Newton's 2nd (aw (a = F) you know of Couseryetion of to accelerate an object a netforce must be Monventhin applied TO IT. (Free >0) F=Mxa (N, Zud) can be seen as au The Law of consensation of momentum says much the extension of Newton's 3rd same Thing but in a different way. If you wish , لعما TO change the momentum of an object, exert "Acrion-Reserven" an impulse on it. $\Delta Ft = \Delta mv$ * In either case, The force or impulse must be exerted on the object by something outside The object. (Internal Forces vs, External Forces) * Internal forces work won't do it. Examples: A. Molecular forces inside a ball won't have any effect on The momentum of The ball. 8. pushing on The dashboard of a car won't have any effect on the momentum of the car. * Story + Sailboat C. Holding a fare and blowing wind inso The effect of momentum of the sall boat. (Internal Forces cance/1) a All of these examples come in balanced pairs that cancel within the object, therefore no change in momentum! This can as an example fig. 7.8 on pg. 92 be confussing!!) - Look at figure

- Read the example

- Read The example

(1)

- The key is to look at the total Kiffe-Buller

system together; not as separate objects.

Illustrations of The Caw of Cons. of Momentum...

Explosion equation:

M18 V18 + M28 V2B = \$

Recall: Example
"Bulber of The Rifle" System

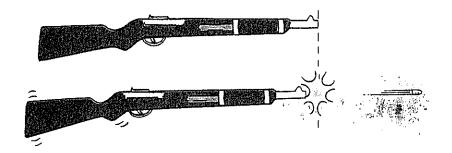


Figure 7.8 🛦

The momentum before firing is zero. After firing, the net momentum is still zero because the momentum of the rifle is equal and opposite to the momentum of the bullet.

Questions

- Newton's second law states that if no net force is exerted on a system, no acceleration occurs. Does it follow that no change in momentum occurs?
- 2. Newton's third law states that the force a rifle exerts on a bullet is equal and opposite to the force the bullet exerts on the rifle. Does it follow that the *impulse* the rifle exerts on the bullet is equal and opposite to the *impulse* the bullet exerts on the rifle?

Answers

- Yes, because no acceleration means that no change occurs in velocity or in momentum (mass × velocity). Another line of reasoning is simply that no net force means there is no net impulse and thus no change in momentum.
- Yes, because the rifle acts on the bullet and the bullet reacts on the rifle during the same time interval. Since time is equal and force is equal and opposite for both, the impulse, Ft, is also equal and opposite for both. Impulse is a vector quantity and can be canceled.

- The momentum of a system cannot change unless it is acred on by external forces. A
- a 4 system will have the same momentum before some invernal inveraction as it has after The interaction occurs. (The Law of Cons.
- * Conserved: when any quantity in physics does not change, we say it is conserved. Momentum is a perfect example of a quoutly That is conserved. (Saved; accounted for)

* The Law of Conservation of Momentum:

"In the absence of an external force, The momentum of a system remains unchanged."

n more Examples: A. atomic nuclei undergoing radioactive decay

B. Cars colliding

c. STATS exploding (Supernova)

Turk of it This way -

It's like accountly. If you start with \$10 dollars, no matter what you subtract when you buy something, you better be able to account for every cent spent. And it all better add up to \$ 10 dollars. If it does, then the value of your \$10 dollars is conserved, and you know where every court went. Nothing is lost.

(See Os on pg. 93)

7.4 Cout.

Newton's 31d Lawi Action & Reserton Monemetern force, There is an equal and opposite fearing force. Forces Moneuten a promentem hors This I dea 700 Momentum of the system. momentium of a system...
Before Collision = Collision Assumptions: The wisges are The SAME. A Carl N = 2.0 mg/ Before CATIVIII CATZ Crash BOOM Crash! CATZ Velocity

CATZ Velocity

After collision equals?

We sold the collision equals?

We sold the collision equals? Afres The Law of Conservation of Moneuture: "The momentum (p) of a system before An interaction, is equal to The momentum (p) of a system after an inverser ton. "

Physics

CH.7: Momentum

Name Date Period

7.5 Collisions (and explosions)

The collisions of objects show the conservation of momentum very well...

Conservation Whenever objects collide in the absence of of external forces, the net momentum of both Momentum objects before collision equals the net momentum of both objects After collision.

(USE NEWTONIAN DEMONSTRATOR)

MET MOMENTUM

before collision

after collision

* Elastic Collisions: When objects collide without being permanently deformed and without generating heat, the collision is said to be an elastic collision. (ata mon-sticky Collisions)

(Seefig. 7.9) r Colliding objects bounce perfectly in perfect

(Seefig. 7.9) ellastic collisions. (Recall ! Ideal World Conds (IWC")

VS. Real World Conds. (RWC"))

In Space same before and after each collision.

(USE New Tonian Demonstrator)

(Slastic Retore)

(Coll. Equation) MIB VIB + M28 V2B = M4VIA + M2A V2A

*Inelastic Collisions: whenever colliding objects

(ata "Sticky become tangled or couple together, an inelastic

Collisions)

collision occurs

MIBVIB + MZBVZB = (MIA + MZA) VI+2A

(1) Momentum conservation holds true even when the colliding objects become distorted and generate heat during the collision.

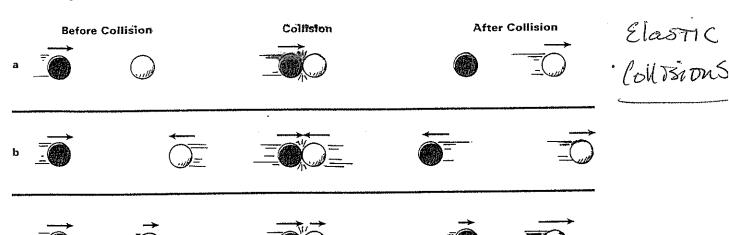
Explosion >>

MiBViB+MBV2B=Ø

Figure 7.9 ▼


Elastic collisions. (a) A moving ball strikes a ball at rest. (b) A head-on collision between two moving balls. (c) A collision of two balls moving in the same direction. In all cases, momentum is simply transferred or redistributed without loss or gain.

DODING PHYSICS


Skateboards and Momentum

Stand at rest on a skateboard and throw a massive object forward or backward. Notice that you recoil in the opposite direction. The recoil is understandable because the momentum before the throw is zero and the net momentum just after the throw is also zero.

Your recoil momentum is equal and opposite to the momentum of the thrown object. Observe that momentum is conserved. Now repeat the throwing motion with the same object, but this time don't let go of it. Do you still recoil? Explain.

Activity

Inelastic Collisions

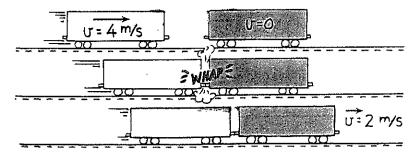


Figure 7.10 ▲ Inelastic collision. The momentum of the freight car on the left is shared with the freight car on the right.

(after looking at fig. 7.10)

net momentum = net momentum before collision after collision

7

(net mv) = (net mv)
before after

plug in the data, MiBVIB+M2BV2B= (MIA+MZA) VI+ZA

(m)(4m/s) + (m)(0m/s) = (2m)(Vafter)Solve for (Vafter)

 $\frac{(m)(4m/s)+(m)(0m/s)}{(2m)}=(Vafter)$

2m/s = (Vafrer)

The initial momentum is shared by both cars without loss or gam. Momentum is conserved?

CH. 7 Momentum (The equations) Homenton - "Inertain motion." HAS all 3 of Newton's tans of worter while Formulas/Equations: Moment um Units P = kg · m/s (momentum) $\rho = m \times v$ M= mkg (moss) V = (Nelocity) Impulse=DFt F=_N (Force) to 5 (Thre) I = _ N.S (Impulse) DJ=DP AFt = DMV Explosions M, V + M2 V2 = 0 Collisions non-sticky collisions" (ElASTIC Collisions) MIBIB+ MZVZB = MIAVIA + MZAVZA "Sticky Collisions" (Inelastic Collisions) MINIB + MINIB = (MI+ MZA) V1+2A

Explosion Example Problem #1:

	MIBVIB + M2BV2B = 0	knowns:
		$M_1 = 0.5kg$
	Solve for V2A	$M_2 = 1.0 kg$
	M18 V13 + M28 V2B = 0	VIB = 0.0 m/s
	+ MIAVIA MAZAVZA	V2B = 0.0 m/s
	-M2A -M2A	V1A =-1.0 m/s
	$\frac{+M_{IA}V_{IA}}{-M_{ZA}} = V_{ZA}$	
Wilderstein and Street, Street		V2A =+?

Plug & chung

$$+(0.5kg)(-1.0m/s) = V_{2A}$$

Explosion Example Problem #2: with the first the second of t

MIBVIB + M2BV2B = 0

Knowns:

Solve for Vot:

M, = 2.0 kg

M2 = 4.0 kg

MIBVIB + MZB V2B = 0

VIB = OWS

+ MIA VIA - MZAVZA
-MZA - MZA

V2B = Om/s

VIA = - 10 m/s

 $+ \frac{M_{1A}V_{1A}}{M_{2A}} = V_{2A}$

V2A = +?

Plug & Chung

+ (2.0kg) (-10 m/s) = V2A - (4.0 kg)

- 20 kg. m/3 - 4.0Kg

V2A = + 5,0 m/s

ElASTIC Collision Example Problem#1:

	Williams and approximate the second of the s	and which shall be sent and the shall the shall be shall
23.4	MIBVIB + MZBVZB = MIAVIA + 1	MZAVZA
	Solve The equation	Known5:
N	for V2A ([19]):	M, = 1.0 kg
MIBY,	3 + M28 V2B - M1AV1A = M2A V2A	$M_2 = 1.0 \text{ kg}$
	M2A M2A	V1B = 2.0 m/s
Mis	1B+M2BV2B-MIAVIA-V2A	V2B = Ow/s
	MZA	V _{1A} = 7
(1,01	w Plug gichnig!! (g) (2,0 m/s) + 0 - 0 = Va A	
Charge and the second	(1,0 Kg)	
	2.0 kg. m/s = V2A	
	(1.0kg)	
	2.0m/= V2A	

Elastic Collision Example Problem #2:

MIBYI8 + M2BV2B = MIAVIA + M2AV2A

	MIBVIB+ MZBVZB-MIAVIA = MZAVZA	Knowns:
	M2A MZA	M = 1.0kg
-	MIBVIB+ MZBVZB-MIAVIA = VZA	M2 = 2.0kg
	May A	V18 = 2,0 m/s
	(1,0kg)(2.0m/s)+0-0 = V2A	V2B = 0 1/8
	C2.0 (mg.)	VIA = Outs
	2.0 Kg: W/s - V2A	V2A = ?
	2 - O My	
	+1.0 m/s = V2A	
	and comments	

Elastic Collision Example Problem #3; MIBNIB + MZBYZB = MIANIA + MZAYZA

MIBVIB + M2BV2B - MIAVIA = MZAVZA KNOWES: MZA m, = 1.0kg ·MIBVIB + MZBVZB-MIAVIA = VZA (1.0 kg) (3.75 m/s) + 0 - (1.0 kg) (-0.25 m/s) V2B (3,75 kg, m/s) + 0 + (0,25 m/s) (4.01/s) = VZA +2,0 m/s = V2A

Inclusion Collision Example Problem#1: (RailRoad MIBVIB + MZBV2B = (MIA+ MZA) VI+ZA CANS)

knowns: Solve equation for VI+2A: * Railroad CAF EXAMPLE From MIBVB + MZBVZB = (MIA+MZA) VI+ZA (MIA+MZA) (MIA+MZA) M = 1000 kg M2 = 1000,0 kg (MIA+MZA) = VI+ZA V2B = 0 m/s VI+ZA ? (1000kg)(4.0m/s)+B (2000kg) 4000 Kg. m/s 2000 14 = VI+2A +2.0 m/s = V1+2A

Inelastic Collision Example Ablent 2: (Fish Problem) (seepg. 97 in text book)

MIB VIB + M2B ZB = (MIA + MZA) VI+ZA

Knowns: Solve for VI+ZA: (B) (Fish) M, = 6,0 kg MIB VIB + M2B V2B = (MIA+MZA)VHZA VIB = 1.0 W/S

(MIA+MZA) (MIA+MZA) VIB = 0 M/S V1+2A = ? WIBVIB + M2BV2B = V1+2A MIA+MZA (6.0kg)(1.0m/s)+0 = V1+2A 8.0 kg 6.0 kg. m/s = V1+2A +0.75 m/s = VI+ZA

CH. 7: Momentum

7.5 Collisions continued

("I frest World Conds ("INC") vs. "Real World Conds. _ ("RWC"))

~ Most collisions usually involve some external

Example: Billiard balls do not continue indefinitely with the momentum given to the momentum Another Example encounter friction with the table and the nin and the air.

- However, during the acrual collision these forces are negligible.

Inelant Cally 1011 vots of Frocton

another example, The ner momentum of two Trucks colliding is the same before and just after The collision. The combined wreck slides along The pavement and friction provides an impulse to decrease this momentum.

However Two space vehicles docking in space, have The same ner momentum just before and just after contract. This is an idealized collision. The only Thing affecting The collision is gravity (microgravity). There is no air rests tance in space!

(See Fig. 7.11 and Questions on pg. 96)

a Goover the Fish story in problem Solving on pg. 97

(1) J'er NexTTime QuesTion 7-1 (Jocko & The Ball)

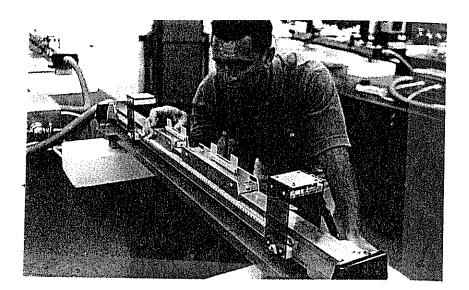


Figure 7.11

Conservation of momentum is nicely demonstrated with the use of an air track. Many small air jets provide a nearly frictionless cushion of air for the gliders to slide on.

Questions

Refer to the gliders on the air track in Figure 7.11 to answer the questions.

- Suppose both gliders have the same mass. They move toward each other at the same speed and experience an elastic collision. Describe the motion after the collision.
- Suppose both gliders have the same mass and stick together when they collide. The gliders move toward each other at equal speed. Describe their motion after the collision.
- Suppose one glider is at rest and is loaded so that it has three times the mass of the moving glider. Again, the gliders stick together when they collide. Describe their motion after the collision.

Answers

- Since the collision is elastic, the gliders reverse directions after colliding and move away from each other at a speed equal to their initial speed.
- Before the collision, the gliders have equal and opposite momenta because their equal
 masses are moving in opposite directions at the same speed. The net momentum of
 the two gliders as a system is zero. Since momentum is conserved, their net momentum after sticking together must also be zero. They slam to a dead halt.
- 3. Before collision, the net momentum equals the momentum of the unloaded, moving glider. After the collision, the net momentum is the same as before, but now the gliders are stuck together and moving as a single unit. The mass of the stuck-together gliders is four times that of the unloaded glider. Thus, the postcollision velocity of the stuck-together gliders is one-fourth of the unloaded glider's velocity before collision. This velocity is in the same direction as before, since the direction as well as the amount of momentum is conserved.

Problem Solving

Consider a 6-kg fish that swims toward and swallows a 2-kg fish that is at rest. If the larger fish swims at 1 m/s, what is its velocity immediately after lunch? Momentum is conserved from the instant before lunch until the instant after (in so brief an interval, water resistance does not have time to change the momentum), so we can write

net momentum before iunch = net momentum after lunch
$$(\text{net } m\nu)_{\text{before}} = (\text{net } m\nu)_{\text{after}}$$

$$(6 \text{ kg})(1 \text{ m/s}) + (2 \text{ kg})(0 \text{ m/s}) = (6 \text{ kg} + 2 \text{ kg})(\nu_{\text{after}})$$

$$6 \text{ kg} \cdot \text{m/s} = (8 \text{ kg})(\nu_{\text{after}})$$

$$\nu_{\text{after}} = \frac{6 \text{ kg} \cdot \text{m/s}}{8 \text{ kg}}$$

$$\nu_{\text{after}} = \frac{3}{4} \text{ m/s}$$

We see that the small fish has no momentum before lunch because its velocity is zero. Using simple algebra we see that after lunch the combined mass of the two-fish system is 8 kg and its speed is $\frac{3}{4}$ m/s in the same direction as the large fish's direction before lunch.

Suppose the small fish is not at rest but is swimming toward the large fish at 2 m/s. Now we have opposing directions. If we consider the direction of the large fish as positive, then the velocity of the small fish is -2 m/s. We pay attention to the negative sign and see that

(net
$$mv$$
)_{before} = (net mv)_{after}
(6 kg)(1 m/s) + (2 kg)(-2 m/s) = (6 kg + 2 kg)(v _{after})
(6 kg·m/s) + (-4 kg·m/s) = (8 kg)(v _{after})

$$\frac{2 \text{ kg·m/s}}{8 \text{ kg}} = v$$
_{after}

$$v$$
_{after} = $\frac{1}{4}$ m/s

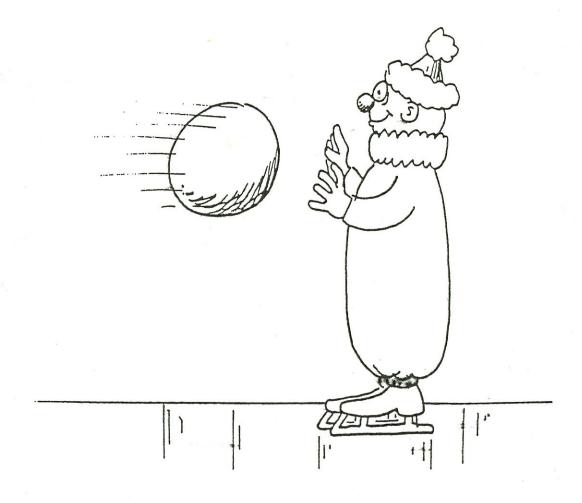
The negative momentum of the small fish is very effective in slowing the large fish. If the small fish were swimming at -3 m/s, then both fish would have equal and opposite momenta. Zero momentum before lunch would equal zero momentum after lunch, and both fish would come to a halt.

More interestingly, suppose the small fish swims at -4 m/s.

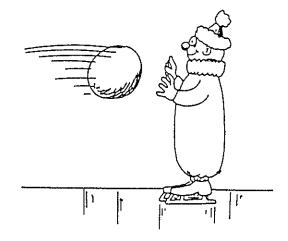
$$(\text{net } mv)_{\text{before}} = (\text{net } mv)_{\text{after}}$$

$$(6 \text{ kg})(1 \text{ m/s}) + (2 \text{ kg})(-4 \text{ m/s}) = (6 \text{ kg} + 2 \text{ kg})(v_{\text{after}})$$

Emphasize the negative sign for the opposite direction. Stress the vector nature of momentum.


$$(6 \text{ kg·m/s}) + (-8 \text{ kg·m/s}) = (8 \text{ kg})(\nu_{\text{after}})$$

$$\frac{-2 \text{ kg·m/s}}{8 \text{ kg}} = \nu_{\text{after}}$$


$$\nu_{\text{after}} = -\frac{1}{4} \text{ m/s}$$

The minus sign tells us that after lunch the two-fish system moves in a direction opposite to the large fish's direction before lunch.

JOCKO, WHO HAS A MASS OF 60 kg AND STANDS AT REST ON ICE, CATCHES A 20 kg BALL THAT IS THROWN TO HIM AT 10 km/h. HOW FAST DOES JOCKO AND THE BALL MOVE ACROSS THE ICE?

JOCKO, WHO HAS A MASS OF 60 kg AND STANDS AT REST ON ICE, CATCHES A 20 kg BALL THAT IS THROWN TO HIM AT 10 km/h. HOW FAST DOES JOCKO AND THE BALL MOVE ACROSS THE ICE?

ANSWER:

THE MOMENTUM BEFORE THE CATCH IS ALL IN THE BALL, 20 kg × 10 km/h = 200 kg·km/h. THIS IS ALSO THE MOMENTUM AFTER THE CATCH, WHERE THE MOVING MASS IS 80 kg--60 kg FOR JOCKO AND 20 kg FOR THE CAUGHT BALL.

 $80 \text{ kg} \times \text{U} = 200 \text{ kg-km/h}$

$$U = \frac{200 \text{ kg} \cdot \text{km/h}}{80 \text{ kg}} = 2.5 \text{ km/h}$$

7,5 cont, ,,

r Perfectly elastic collisions are not common in the everyday world. We find in the everyday world. We find in some hear is generated - Source during collisions.

Example: Drop a ball and bounce it off the floor. Both the ball and the floor are a bit warmer. ((Anyon feelit!)

n Even a superball will not bounce to its initial height. why?

- n However, at an atomic level perfectly elastic collisions are common place. Electrically charged particles bounce off one another w/our generating heat. They don't even touch! How is this possible? They bounce but they don't rouch? You'll see larer why.
 - In space you can have "Ideal World" ("IWC")
 examples of momentum conservation,
 - MACTO-scale examples on Earth are "Real World," hence moment um ("RW") leaks Through heat, sound, and friction.
 - At The atomic level (or scale) you can have "I deal World Condo," or Collisions,

Physics

CH.7 Momentun

7.6 Momentum Vectors - Jectors direction (->)

"Momentum is conserved even when interacting objects don't move along the same straight line.

-graphol -lysh. ren Trig.

To analyze momentum in any direction we use The vector techniques we've previously learned. (use graphical techniques or mathematical techniques)

keep m mind like velocity, momentum is a vector quantity. It has magnitude & direction, so it can easily be represented by a vector.

Recall: $p = m \cdot v$

by a ->.

~ Let's look at three examples.

(Fig. 7.12) on pg. 98) (The resultant is \$2 times
The momentum of each car before
The collision)

(Fig. 7.13 on pg. 99)

(Rg. 7.14 on pg. 99)

Big Jam

The End

Conservation of momentum, and in Chap. 8
The conservation of energy, are two of the most powerful tools of mechanics (the study of motion, matter, and energy interactions).
The application of mechanics helps to understand the interactions of subatomor particles to entire galaxies. (micro to megascale)

- un cro - macro - maga

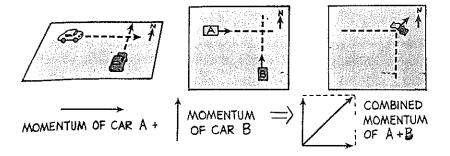


Figure 7.12 A

Momentum is a vector quantity. The momentum of the wreck is equal to the vector sum of the momenta of car A and car B before the collision.

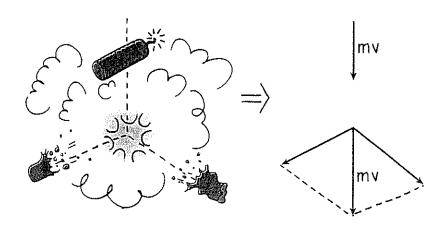
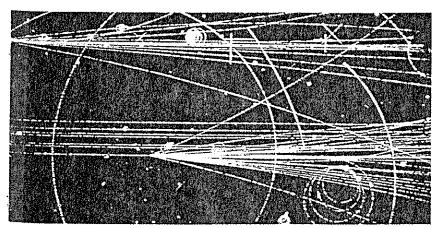



Figure 7.13 🛕

When the firecracker bursts, the vector sum of the momenta of its fragments add up to the firecracker's momentum just before bursting.

◄ Figure 7.14

Momentum is conserved for the high-speed elementary particles, as shown by the tracks they leave in a bubble chamber. The relative mass of the particles is determined by, among other things, the paths they take after collision.